Skip to main content

Three Wheels Balancing Robot

The three wheels balancing robot is similar to a ballbot from the point of view of the goal. In comparison to ballbot which balance itself on a single ball, three wheels balancing robot is designed to balance itself on a single rod. The common characteristics of this kind of robots is that there’s one sole contact point to the ground.

Remigijus Sutkus from Lithuania (ReM-RC YouTube channel) made a mechatronic project which is an interesting example of three wheels balancing robot. This is one of his projects in which reaction wheels were used. A reaction wheel is a type of flywheel used primarily by spacecraft for three-axis attitude control. It does not require rockets or external applicators of torque. A reaction wheel provides a high pointing accuracy, and is useful when the spacecraft must be rotated by very small amounts.

Let's go back to Earth, where there is gravity and where Remigijus used the reaction wheels to balance the mechatronic system on a single rod. He combined education with fun like a real mechatronics enthusiast:

I did this to understand how it works. Robotics and programming is my hobby.

For testing, a low-cost and low-power system on a chip microcontroller ESP32 was used for continuous analysis of the balance stabilization process. Remigijus assumes that it should also work with ATmega 328. MPU6050 sensor (accelerometer and gyroscope) was used for measuring acceleration and angular velocity in three axes.





Nidec 24H PWM brushless BLDC motors with 2 channel encoder were used to drive the reaction wheels. He tried to use encoders, but he didn't find any positive effect. In this project he didn't use it. The mechanical parts were 3D printed.

The whole mechatronic project weight is 730 grams, and it is stabilized by three wheels each weighing 55 grams.

Comments

Anonymous said…
I did something similar, but my project was looking less impressive

You might also like

    Popular posts

    What is Mechatronics?

    Mechatronics definition Mechatronics is a synergistic combination of precision engineering, electronic control and mechanic systems. It is the science, that exists at the interface among the other five disciplines: mechanics, electronics, informatics, automation, robotics. It is one of the most dynamically developing fields of technology and science. The word 'mechatronics' appeared for the first time in Japan in 1969. mechatronics = mecha nics + elec tronics + computing

    Intro to Mechatronics [e-book pdf]

    Intro to Mechatronics - lecture by Professor Vikram Kapila, New York University Mechatronics Defined Mechatronics: Working Definition for us Product Realization Paradigm Disciplinary Foundations of Mechatronics Multi-/Cross-/Inter-Disciplinary Sequential/Concurrent Product Realization Mechatronics-based Product Realization Mechatronic Design Process

    Ascento - The Two-Wheeled Jumping Robot

    All-terrain capabilities are required to extend beyond flat surfaces the application range of wheeled robots. First think is four or six-legged robots which have been well known for years. Nowadays, thanks to more and more perfect gait algorithms, the two-legged (bipedal) robots appears more and more often. ETH Zürich students combine the advantages of wheeled robot and two-legged robot.

    Smart Home Makes Your Life Easier

    Smart homes are also called intelligent, automated or autonomous houses. Nowadays, you can also automate the flats. Dynamic development of automation technology gives you opportunities that were only seen in sci-fi movies in the past. Soon, probably only your imagination will be the limit. What gives us the smart home system?

    How 6-Axis Industrial Robots Work

    6-axis industrial robots are commonly used in the manufacturing industry due to their flexibility, powerful programming software, payload capacities ranging from 5kg up to 1000kg and accuracy to 0.1mm or better. Here is a basic breakdown of how a standard 6-axis robot works. The way it rotates, how it is programmed, and the different types of tooling and grippers.

    How Automated Parking System Works

    An automated car parking system is a mechatronic system designed to transport and park cars automatically. The first semi-automated parking system was used in Paris, France in 1905 at the Garage Rue de Ponthieu (the car was transported to selected level using an internal elevator and the vehicle was parked by attendants). An automated storage and retrieval system for cars is a solution to cities' parking problems, such as the space wasting in a multi-story parking.

    DIY Low Cost 6-Axis Desktop Robot

    Learning how to build a robot is a long way. It is the way by mechanics, electronics and programming. Such a mechatronics project is associated with problems such as stiffness (mechanics), overvoltage (electronics) or bug (software). Of course, if something is wrong, we always say 'it's not a bug, it's a feature', but finally a robot has to start working properly.

    Mechatronic Systems Applications [e-book pdf]

    Mechatronics is the synergistic blend of mechanics, electronics, and computer science. This book is concerned with applications of mechatronic systems in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education.

    Stretch - Boston Dynamics Unveils New Robot for Warehouse Automation

    Boston Dynamics is the global leader in mobile robotics. Their popular robots are SpotMini, Spot, Atlas and Handle. Now they has revealed 'Stretch', which is a new box-moving robot designed to support the growing demand for flexible automation solutions in the logistics industry. A Massachusetts company well known for its humanoid robots and dog-like androids is preparing to muscle its way into the warehouse automation industry with its latest mechatronic solution. Warehouse automation is a fast-growing market fueled by increased demand in e-commerce. The robot called Stretch is Boston Dynamics’ first commercial robot specifically designed for warehouse facilities and distribution centers. Robert Playter, CEO of Boston Dynamics said: Warehouses are struggling to meet rapidly increasing demand as the world relies more on just-in-time delivery of goods. Mobile robots enable the flexible movement of materials and improve working conditions for employees. Stretch